Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9621, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670994

RESUMO

In Proton Exchange Membrane Fuel Cells (PEMFCs), the presence of residual water within the Gas Diffusion Layer (GDL) poses challenges during cold starts and accelerates degradation. A computational model based on the Lattice Boltzmann Method (LBM) was developed to consider the capillary pressure inside the PEMFC and to analyze the exact geometries of the GDLs, which were obtained using the Computed Tomography scan. The novelty of this study is to suggest a methodology to compare the quantitative water removal performance of the GDLs without long-term experimental testing. Two different samples of GDLs were considered, pristine and aged. The results of quantitative measurements revealed the amount of water columns (breakthroughs) inside each sample. Considering the volume of 12,250,000 µm3 for each sample, the pristine and the aged samples are prone to have 774,200 µm3 (6.32%) and 1,239,700 µm3 (10.12%) as water columns in their porous domain. Micro-structural properties such as connectivity, mean diameter, effective diffusivity, etc. were also compared to observe the impacts of aging on the properties of the GDL.

2.
Nat Mater ; 23(5): 680-687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366155

RESUMO

Hybrid organic/inorganic materials have contributed to solve important challenges in different areas of science. One of the biggest challenges for a more sustainable society is to have active and stable catalysts that enable the transition from fossil fuel to renewable feedstocks, reduce energy consumption and minimize the environmental footprint. Here we synthesize novel hybrid materials where an amorphous oxide coating with embedded organic ligands surrounds metallic nanocrystals. We demonstrate that the hybrid coating is a powerful means to create electrocatalysts stable against structural reconstruction during the CO2 electroreduction. These electrocatalysts consist of copper nanocrystals encapsulated in a hybrid organic/inorganic alumina shell. This shell locks a fraction of the copper surface into a reduction-resistant Cu2+ state, which inhibits those redox processes responsible for the structural reconstruction of copper. The electrocatalyst activity is preserved, which would not be possible with a conventional dense alumina coating. Varying the shell thickness and the coating morphology yields fundamental insights into the stabilization mechanism and emphasizes the importance of the Lewis acidity of the shell in relation to the retention of catalyst structure. The synthetic tunability of the chemistry developed herein opens new avenues for the design of stable electrocatalysts and beyond.

3.
Biomater Sci ; 11(7): 2551-2565, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36786283

RESUMO

Blood transfusions are a life-saving procedure since they can preserve the body's oxygen levels in patients suffering from acute trauma, undergoing surgery, receiving chemotherapy or affected by severe blood disorders. Due to the central role of hemoglobin (Hb) in oxygen transport, so-called Hb-based oxygen carriers (HBOCs) are currently being developed for situations where donor blood is not available. In this context, an important challenge that needs to be addressed is the oxidation of Hb into methemoglobin (metHb), which is unable to bind and release oxygen. While several research groups have considered the incorporation of antioxidant enzymes to create HBOCs with minimal metHb conversion, the use of biological enzymes has important limitations related to their high cost, potential immunogenicity or low stability in vivo. Thus, nanomaterials with enzyme-like properties (i.e., nanozymes (NZs)) have emerged as a promising alternative. Amongst the different NZs, gold (Au)-based metallic nanoparticles are widely used for biomedical applications due to their biocompatibility and multi-enzyme mimicking abilities. Thus, in this work, we incorporate Au-based NZs into a type of HBOC previously reported by our group (i.e., Hb-loaded metal-organic framework (MOF)-based nanocarriers (NCs)) and investigate their antioxidant properties. Specifically, we prepare MOF-NCs loaded with Au-based NZs and demonstrate their ability to catalytically deplete over multiple rounds of two prominent reactive oxygen species (ROS) that exacerbate Hb's autoxidation (i.e., hydrogen peroxide and the superoxide radical). Importantly, following loading with Hb, we show how these ROS-scavenging properties translate into a decrease in metHb content. All in all, these results highlight the potential of NZs to create novel HBOCs with antioxidant protection which may find applications as a blood substitute in the future.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Antioxidantes , Oxigênio/metabolismo , Espécies Reativas de Oxigênio , Hemoglobinas/metabolismo , Metemoglobina
4.
J Am Chem Soc ; 144(40): 18286-18295, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173602

RESUMO

The compositional and structural diversity of bimetallic nanocrystals (NCs) provides a superior tunability of their physico-chemical properties, making them attractive for a variety of applications, including sensing and catalysis. Nevertheless, the manipulation of the properties-determining features of bimetallic NCs still remains a challenge, especially when moving away from noble metals. In this work, we explore the galvanic replacement reaction (GRR) of In NCs and a copper molecular precursor to obtain Cu-In bimetallic NCs with an unprecedented variety of morphologies and distribution of the two metals. We obtain spherical Cu11In9 intermetallic and patchy phase-segregated Cu-In NCs, as well as dimer-like Cu-Cu11In9 and Cu-In NCs. In particular, we find that segregation of the two metals occurs as the GRR progresses with time or with a higher copper precursor concentration. We discover size-dependent reaction kinetics, with the smaller In NCs undergoing a slower transition across the different Cu-In configurations. We compare the obtained results with the bulk Cu-In phase diagram and, interestingly, find that the bigger In NCs stabilize the bulk-like Cu-Cu11In9 configuration before their complete segregation into Cu-In NCs. Finally, we also prove the utility of the new family of Cu-In NCs as model catalysts to elucidate the impact of the metal elemental distribution on the selectivity of these bimetallics toward the electrochemical CO2 reduction reaction. Generally, we demonstrate that the GRR is a powerful synthetic approach beyond noble metal-containing bimetallic structures, yet that the current knowledge on this reaction is challenged when oxophilic and poorly miscible metal pairs are used.


Assuntos
Cobre , Nanopartículas , Dióxido de Carbono , Catálise , Cobre/química , Metais , Nanopartículas/química
5.
Chem Sci ; 13(21): 6418-6428, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35733888

RESUMO

Using azolium-based ligands for the construction of metal-organic frameworks (MOFs) is a viable strategy to immobilize catalytically active N-heterocyclic carbenes (NHC) or NHC-derived species inside MOF pores. Thus, in the present work, a novel copper MOF referred to as Cu-Sp5-BF4, is constructed using an imidazolinium ligand, H2Sp5-BF4, 1,3-bis(4-carboxyphenyl)-4,5-dihydro-1H-imidazole-3-ium tetrafluoroborate. The resulting framework, which offers large pore apertures, enables the post-synthetic modification of the C2 carbon on the ligand backbone with methoxide units. A combination of X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ssNMR) and electron microscopy (EM), are used to show that the post-synthetic methoxide modification alters the dimensionality of the material, forming a turbostratic phase, an event that further improves the accessibility of the NHC sites promoting a second modification step that is carried out via grafting iridium to the NHC. A combination of X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) methods are used to shed light on the iridium speciation, and the catalytic activity of the Ir-NHC containing MOF is demonstrated using a model reaction, stilbene hydrogenation.

6.
Polym Chem ; 13(13): 1880-1890, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35432604

RESUMO

Nanocomposites comprising a polymer matrix and metallic nanoparticles (NPs) can merge the structural features of the matrix material with the functional characteristics of the NPs. While such materials are promising for a wide range of applications, their preparation typically requires multi-step processes that can be difficult to control. Alternatively, materials with NPs can be directly accessed in a controlled manner by exploiting zero-valent metallosupramolecular polymer (MSP) precursors. We here report how the nature of the polymer and its molecular weight affect the nanocomposite formation and structure. Poly(tetrahydrofuran)-based macromonomers with suitable ligands are used to prepare MSPs based on bis(η2-alkyne)platinum(0) complexes. Heating these materials causes disassembly of the complexes and, upon the release of Pt0-atoms, Pt-NPs form in the matrix polymer. The Pt content in the MSP influences the NP formation and thereby the characteristics of the nanocomposites. It is also possible to trigger the complex dissociation and NP formation by exposure to UV light. This allows photolithographic processing and thus the preparation of nanocomposites that contain Pt-NPs in a spatially controlled manner.

7.
Ultramicroscopy ; 234: 113460, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35121280

RESUMO

Curvilinear structures frequently appear in microscopy imaging as the object of interest. Crystallographic defects, i.e dislocations, are one of the curvilinear structures that have been repeatedly investigated under transmission electron microscopy (TEM) and their 3D structural information is of great importance for understanding the properties of materials. 3D information of dislocations is often obtained by tomography which is a cumbersome process since it is required to acquire many images with different tilt angles and similar imaging conditions. Although, alternative stereoscopy methods lower the number of required images to two, they still require human intervention and shape priors for accurate 3D estimation. We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs by utilizing deep convolutional neural networks (CNNs) without making any prior assumption on 3D shapes. In this work, we mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.

8.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493654

RESUMO

Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.

9.
Nanoscale ; 13(32): 13650-13657, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477640

RESUMO

Novel preparative approaches towards lamellar nanocomposites of carbon and inorganic materials are relevant for a broad range of technological applications. Here, we describe how to utilize the co-assembly of a liquid-crystalline hexaphenylene amphiphile and an aluminosilicate precursor to prepare carbon-aluminosilicate nanocomposites with controlled lamellar orientation and macroscopic order. To this end, the shear-induced alignment of a precursor phase of the two components resulted in thin films comprising lamellae with periodicities on the order of the molecular length scale, an "edge-on" orientation relative to the substrate and parallel to the shearing direction with order on the centimeter length scale. The lamellar structure, orientation, and macroscopic alignment were preserved in the subsequent pyrolysis that yielded the corresponding carbon-aluminosilicate nanocomposites.

10.
Nat Commun ; 12(1): 3509, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34083529

RESUMO

The nature of the "forbidden" local- and long-range polar order in nominally non-polar paraelectric phases of ferroelectric materials has been an open question since the discovery of ferroelectricity in oxide perovskites, ABO3. A currently considered model suggests locally correlated displacements of B-site atoms along a subset of <111> cubic directions. Such off-site displacements have been confirmed experimentally; however, being essentially dynamic in nature they cannot account for the static nature of the symmetry-forbidden polarization implied by the macroscopic experiments. Here, in an atomically resolved study by aberration-corrected scanning transmission electron microscopy complemented by Raman spectroscopy, we reveal, directly visualize and quantitatively describe static, 2-4 nm large polar nanoclusters in the nominally non-polar cubic phases of (Ba,Sr)TiO3 and BaTiO3. These results have implications on understanding of the atomic-scale structure of disordered materials, the origin of precursor states in ferroelectrics, and may help answering ambiguities on the dynamic-versus-static nature of nano-sized clusters.

11.
Sci Adv ; 7(18)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33910908

RESUMO

Self-healing or healable polymers can recuperate their function after physical damage. This process involves diffusion of macromolecules across severed interfaces until the structure of the interphase matches that of the pristine material. However, monitoring this nanoscale process and relating it to the mechanical recovery remain elusive. We report that studying diffusion across healed interfaces and a correlation of contact time, diffusion depth, and mechanical properties is possible when two metallosupramolecular polymers assembled with different lanthanoid salts are mended. The materials used display similar properties, while the metal ions can be tracked with high spatial resolution by energy-dispersive x-ray spectrum imaging. We find that healing actual defects requires an interphase thickness in excess of 100 nm, 10 times more than previously established for self-adhesion of smooth films of glassy polymers.

12.
Sci Adv ; 7(9)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627433

RESUMO

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2 However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm-2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.

13.
J Am Chem Soc ; 142(37): 15931-15940, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32845630

RESUMO

Solid-state reactions between micrometer-size powders are among the oldest, simplest, and still widely used methods for the fabrication of inorganic solids. These reactions are intrinsically slow because, although the precursorsare "well mixed" at the macroscale, they are highly inhomogeneous at the atomic level. Furthermore, their products are bulk powders that are not suitable for device integration. Herein, we substitute micrometer-size particles with nanocrystals. Scaling down the size of the precursors reduces the reaction time and temperature. More importantly, the final products are nanocrystals with controlled size and shape that can be used as active materials in various applications, including electro- and photocatalysis. The assembly of the nanocrystal precursors as ordered close-packed superlattices enables microscopy studies that deepen the understanding of the solid-state reaction mechanism. We learn that having only one of the two nanocrystal precursors dissolving and diffusing toward the other is crucial to obtain a final nanocrystalline product with homogeneous size and shape. The latter are regulated by the nanocrystal precursor that is the most stable at the reaction temperature. Considering the variety of controlled nanocrystals available, our findings open a new avenue for the synthesis of functional and tunable polyelemental nanomaterials.

14.
J Am Chem Soc ; 142(31): 13415-13425, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32654487

RESUMO

Metal-organic frameworks (MOFs) offer great promise in a variety of gas- and liquid-phase separations. However, the excellent performance on the lab scale hardly translates into pilot- or industrial-scale applications due to the microcrystalline nature of MOFs. Therefore, the structuring of MOFs into pellets or beads is a highly solicited and timely requirement. In this work, a general structuring method is developed for preparing MOF-polymer composite beads based on an easy polymerization strategy. This method adopts biocompatible, biodegradable poly(acrylic acid) (PAA) and sodium alginate monomers, which are cross-linked using Ca2+ ions. Also, the preparation procedure employs water and hence is nontoxic. Moreover, the universal method has been applied to 12 different structurally diverse MOFs and three MOF-based composites. To validate the applicability of the structuring method, beads consisting of a MOF composite, namely Fe-BTC/PDA, were subsequently employed for the extraction of Pb and Pd ions from real-world water samples. For example, we find that just 1 g of Fe-BTC/PDA beads is able to decontaminate >10 L of freshwater containing highly toxic lead (Pb) concentrations of 600 ppb while under continuous flow. Moreover, the beads offer one of the highest Pd capacities to date, 498 mg of Pd per gram of composite bead. Furthermore, large quantities of Pd, 7.8 wt %, can be readily concentrated inside the bead while under continuous flow, and this value can be readily increased with regenerative cycling.

15.
Nat Commun ; 11(1): 3378, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632144

RESUMO

Perovskite light-emitting diodes (PeLEDs) based on three-dimensional (3D) polycrystalline perovskites suffer from ion migration, which causes overshoot of luminance over time during operation and reduces its operational lifetime. Here, we demonstrate 3D/2D hybrid PeLEDs with extremely reduced luminance overshoot and 21 times longer operational lifetime than 3D PeLEDs. The luminance overshoot ratio of 3D/2D hybrid PeLED is only 7.4% which is greatly lower than that of 3D PeLED (150.4%). The 3D/2D hybrid perovskite is obtained by adding a small amount of neutral benzylamine to methylammonium lead bromide, which induces a proton transfer from methylammonium to benzylamine and enables crystallization of 2D perovskite without destroying the 3D phase. Benzylammonium in the perovskite lattice suppresses formation of deep-trap states and ion migration, thereby enhances both operating stability and luminous efficiency based on its retardation effect in reorientation.

16.
Sci Adv ; 6(4): eaay9851, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32064325

RESUMO

Poly(triazine imide) (PTI), a crystalline g-C3N4, hosting two-dimensional nanoporous structure with an electron density gap of 0.34 nm, is highly promising for high-temperature hydrogen sieving because of its high chemical and thermal robustness. Currently, layered PTI is synthesized in potentially unsafe vacuum ampules in milligram quantities. Here, we demonstrate a scalable and safe ambient pressure synthesis route leading to several grams of layered PTI platelets in a single batch with 70% yield with respect to the precursor. Solvent exfoliation under anhydrous conditions led to single-layer PTI nanosheets evidenced by the observation of triangular g-C3N4 nanopores. Gas permeation studies confirm that PTI nanopores can sieve He and H2 from larger molecules. Last, high-temperature H2 sieving from PTI nanosheet-based membranes, prepared by the scalable filter coating technique, is demonstrated with H2 permeance reaching 1500 gas permeation units, with H2/CO2, H2/N2, and H2/CH4 selectivities reaching 10, 50, and 60, respectively, at 250°C.

17.
Chem Sci ; 11(40): 10991-10997, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34094347

RESUMO

While metal-organic frameworks (MOF) alone offer a wide range of structural tunability, the formation of composites, through the introduction of other non-native species, like polymers, can further broaden their structure/property spectrum. Here we demonstrate that a polymer, placed inside the MOF pores, can support the collapsible MOF and help inhibit the aggregation of nickel during pyrolysis; this leads to the formation of single atom nickel species in the resulting nitrogen doped carbons, and dramatically improves the activity, CO selectivity and stability in electrochemical CO2 reduction reaction. Considering the vast number of multifarious MOFs and polymers to choose from, we believe this strategy can open up more possibilities in the field of catalyst design, and further contribute to the already expansive set of MOF applications.

18.
J Am Chem Soc ; 142(1): 342-348, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815458

RESUMO

Nanocomposites consisting of a polymer matrix and metallic nanoparticles can merge the functional, structural, and mechanical properties of the two components and are useful for applications that range from catalysis to soft electronics. Gaining spatial control over the nanoparticle incorporation is useful, for example to confine catalytic sites or create electrically conducting pathways. Here, we show that this is possible by the controlled disassembly of a metallosupramolecular polymer containing zerovalent platinum complexes to form nanoparticles in situ. To achieve this, a telechelic poly(ethylene-co-butylene) was end-functionalized with diphenylacetylene ligands and chain-extended through the formation of bis(η2-alkyne)Pt0 complexes. These complexes are stable at ambient conditions, but they can be dissociated upon heating or exposure to ultraviolet light, which allows producing Pt nanoparticles when and where needed and without auxiliary reagents or formation of byproducts. This approach was exploited to create objects with well-defined catalytically active areas.

19.
Chem Commun (Camb) ; 55(97): 14633-14636, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31746844

RESUMO

Sodium chromium hexacyanoferrate (NaCrHCF) is obtained here using a facile co-precipitation method at room temperature. The powder was investigated in terms of potential use as a cathode material for aqueous sodium-ion batteries under neutral conditions. The highest achieved discharge capacity of NaCrHCF was around ∼64 mA h g-1 at C/3 current rate.

20.
J Am Chem Soc ; 141(31): 12397-12405, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31318207

RESUMO

High internal surface areas, an asset that is highly sought after in material design, has brought metal-organic frameworks (MOFs) to the forefront of materials research. In fact, a major focus in the field is on creating innovative ways to maximize MOF surface areas. Despite this, large-pore MOFs, particularly those with mesopores, continue to face problems with pore collapse upon activation. Herein, we demonstrate an easy method to inhibit this problem via the introduction of small quantities of polymer. For several mesoporous, isostructural MOFs, known as M2(NDISA) (where M = Ni2+, Co2+, Mg2+, or Zn2+), the accessible surface areas are increased dramatically, from 5 to 50 times, as the polymer effectively pins the MOFs open. Postpolymerization, the high surface areas and crystallinity are now readily maintained after heating the materials to 150 °C under vacuum. These activation conditions, which could not previously be attained due to pore collapse, also provide accessibility to high densities of open metal coordination sites. Molecular simulations are used to provide insight into the origin of instability of the M2(NDISA) series and to propose a potential mechanism for how the polymers immobilize the linkers, improving framework stability. Last, we demonstrate that the resulting MOF-polymer composites, referred to as M2(NDISA)-PDA, offer a perfect platform for the appendage/immobilization of small nanocrystals inside rendering high-performance catalysts. After decorating one of the composites with Pd (average size: 2 nm) nanocrystals, the material shows outstanding catalytic activity for Suzuki-Miyaura cross-coupling reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...